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Intrinsic fractality of classic shot noise
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We revisit the classic shot noise of Campbell and Schottky—a stochastic process governed by Ornstein-
Uhlenbeck dynamics driven by a Poissonian noise. Exploring the order statistics of the shot magnitudes
composing its stationary noise level, we show that classic shot noise is intrinsically fractal. This fractality is
manifested by (i) intrinsic Paretian and scale-invariant structures; (ii) an intrinsic power-law scaling; (iii) an
intrinsic statistical resilience to random power-law perturbations.
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I. INTRODUCTION

Shot noise, pioneered by Campbell [1,2] and Schottky [3]
at the beginning of the twentieth century, is a cornerstone
model in statistical physics. In its “classic” form, a shot noise
system is abstractly described as follows: A random source
emits ‘shots’ of unit magnitude stochastically in time, the
shot emissions following a Poisson process with constant
intensity (7). Once emitted, the shots decay exponentially at
a constant rate (k). The shot noise level at time
t—henceforth denoted &(r)—is the aggregate of all shot mag-
nitudes present at time ¢ (originating from shots emitted up to
time ?).

Denoting by {7;}; the shots’ emission epochs—which form
a Poisson process with intensity z7—the shot noise level at
time ¢ is given by

&) = 2 exp(= k(1 —1)). (1)

=
=t

The dynamics of the shot noise process (&(7)),, in turn, are
governed by the Ornstein-Uhlenbeck stochastic differential
equation

&(0) = - k(1) + N(0), (2)

driven by the Poisson noise N(t)=3;8(t—7;) [8(-) denoting
Dirac’s delta function]. '

The classic shot noise process (&(¢)), and its generaliza-
tions were explored extensively by researchers. Rice con-
ducted a comprehensive statistical analysis and asymptotic
analysis of shot noise [4,5]. Gilbert and Pollak investigated
the stationary probability distribution of shot noise [6]. Lo-
wen and Teich introduced fractal shot noise [7], and power-
law shot noise [8]. Eliazar and Klafter introduced nonlinear
shot noise [9], and studied the simultaneous display of the
Noah and Joseph effects by general shot noise processes
[10]. (This short list of references is far from being exhaus-
tive.)
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'Equation (1) follows from Eq. (2) by straightforward differentia-
tion with respect to the temporal variable 7.
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In this research we revisit the classic shot noise described
above and explore the order statistics of the shot magnitudes
composing its stationary noise level. Our study unveils the
intrinsic fractality of classic shot noise, manifested by (i)
Paretian structure (Sec. III); (ii) scale-invariant structure
(Sec. 1V); (iii) power-law scaling (Sec. V); (iv) statistical
resilience to random power-law perturbations (Sec. VI).

Classic shot noise thus turns out to be an elemental sto-
chastic example of how most “benign” and “well-behaved”
inputs—a simple Poissonian shot inflow coupled linearly
with a simple exponential decay—can give rise to an intri-
cate statistically fractal structure.

We begin with some preliminaries (Sec. II), and thereafter
present our research (Sec. III-VI). Throughout the manu-
script the acronym “i.i.d.” stands for “independent and iden-

Law
tically distributed,” and the sign = denotes equality in law
(in distribution) of random objects.

II. PRELIMINARIES

We consider a classic shot noise process (&(f))_o« <o, ini-
tiated at time r=-%. This process is both Markov and
stationary—with mean #/k, variance #7/2k, and auto-
correlation function exp{—«|¢|} (o0 <r<o0) [11,12].

The process’s stationary noise level is governed by

(i) Laplace transform

1
1- -0
L(6) =expy — ﬂf de (3)
K 0 X
(6=0);
(ii) harmonic cumulant sequence
1
Cp= 1 (4)
Km

(m=1,2,...)."

With no loss of generality, consider the shot noise level
&(0) at time r=0. This shot noise level is the aggregate of all
shot magnitudes originating from shots arriving up to time
t=0. Denote by O,, the size of the nth largest shot magnitude

*The first-order cumulant C 1 and the second-order cumulant C,
are, respectively, the mean and variance.
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(n=1,2,...) composing the shot noise level &(0). Label-
ing the shots’ emission epochs up to time ¢=0 by
< T3<7,<7,<0, Eq. (1) implies that O,
=exp(k7_,) (n=1,2,...) and £&0)=2"_,0,.

The sequence of shot magnitudes {O,}_, is ordered de-
creasingly 1>0,;>0,>05>---, and is henceforth referred
to as the sequence of order statistics of the shot magnitudes
composing the stationary shot noise level (sampled, with no
loss of generality, at time r=0). This sequence:

(i) forms an inhomogeneous Poisson process scattered on
the unit interval (0, 1) with harmonic intensity

nl
ANx)=—~ (5)
KX
(0<x<1);
(ii) admits the stochastic representation
Law
{On}:ﬂ ={U, "'Un)K/”}::la (6)

where {U,}_, is a sequence of i.i.d. random variables distrib-
uted uniformly on the unit interval (0,1).

Equations (3)—(5) stem from counterpart results regarding
general shot noise processes (see, for example, [13]). The
proof of Eq. (6) is given in the Appendix (Sec. 1). The
Laplace transform L(6) of Eq. (3) and the harmonic intensity
N(x) of Eq. (5) are connected via

1
L(6) =expy — f (1 —exp{—= &x})N(x)dx [, (7)
0

(#=0). Equation (7)—a special case of Campbell’s theorem
(a key result in the theory of Poisson processes [ 14])—is the
analytic manifestation of the connection &0)=27_,O,.

III. INTRINSIC PARETIAN STRUCTURE

Consider the sequence of consecutive ratios of the shot
noise order statistics {0, };_,—namely, the random sequence
{0,/ O}y The ratio O,/ O, ,—taking values in the ray
(1,90 )—measures the size of the nth order statistic with re-
spect to the size of the (n+1)th order statistic.

The stochastic representation of Eq. (6) implies that the
consecutive ratios O0,/0,,, (n=1,2,...) are independent
random variables governed by a common Pareto law with
exponent 7/ k. Specifically:

O % Law
- = {P.h.. (8)
On+ 1) n=1 ]

where {P,}_, is a sequence of i.i.d. random variables taking
values in the ray (1,%) and governed by the probability
distribution

)
Pr(P, > )= - 9)

(x=1).

[In the derivation of Eq. (8) from Eq. (6) we used the fact
that if I/ is a random variable uniformly distributed on the
unit interval (0, 1), then the random variable ¢/~"/® is Pareto
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distributed with exponent a: Pr(t/™*>x)=x"% (x=1; « be-
ing an arbitrary positive exponent).]

Pareto’s law, discovered in the context of human income
[15], describes a power-law connection between positive-
valued measurements and their occurrence frequencies. Em-
pirically, Pareto’s law is ubiquitously observed across the
Sciences—see [16] and references therein. Theoretically,
Pareto’s law manifests statistical fractality—see Chap. 38 in
[17].

The intrinsic Paretian structure of the shot noise order
statistics {O,},_,, as shall be demonstrated in the following
section, is indeed a manifestation of statistical fractality—a
scale-invariant structure of the order statistics {O,},_,.

The ubiquity of Pareto’s law in diverse real world systems
motivated researchers to seek mechanisms capable of gener-
ating this law. Examples include preferential attachment
(Yule process [18], Simon’s model [19]), self-organized criti-
cality ([20] and references therein), and the oligarchy mecha-
nism (for the universal generation of Pareto’s law with
integer-valued exponents [21]). (For detailed reviews of
“Pareto-generating mechanisms” the readers are referred to
Chap. 14 in [22], and [16,23].)

As shown here, classic shot noise is yet another mecha-
nism which naturally generates Pareto’s law from most “be-
nign” and “well-behaved” building blocks: A simple Poisson
process coupled linearly with a simple exponential decay.

IV. INTRINSIC SCALE-INVARIANT STRUCTURE

Consider the order statistics O,,,1>0,,,,>0,, 3>,
normalized with respect to the size of the m™ order statistic
O,,. This yields the normalized sequence of order statistics
{O'n+n/0m}:;1‘

The stochastic representation of Eq. (6) implies that the
normalized sequences {O,,.,/O,}._, (m=1,2,...) are all
equal, in law, to the “original” sequence of order statistics

{On}n 1 Namely.
O {On}n_— (1 O)
Om 1 - !

(m=1,2,...).

Equation (10) implies that the statistical structure of the
shot noise order statistics {O,}_, is self-similar. Any order
statistic “looking down” on the order statistics smaller than
itself—while normalizing their sizes with respect to his own
size—will observe the scale-invariant statistical structure
{O,},_, (the “scale” here being the order of the order statistic
“looking down”).

Is this scale-invariance unique? Do other shot noise sys-
tems admit the intrinsic scale-invariant structure of Eq. (10)?

To answer these questions consider a general shot noise
system “fed” by shots with random i.i.d. magnitudes of ge-
neric size M, and whose shot-decay pattern is governed by
the decay-dynamics x=—F(x) [13]. * In this general setting,

3The function F(x) (x>0) needs to be positive valued, and such
that the ordinary differential equation x=—F(x) is well defined and
has solutions decaying to zero.
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the statistical structure of the shot noise order statistics is
scale invariant in the sense of Eq. (10) if and only if: (i) the
generic magnitude size M takes values in the unit interval
(0,1]; and (ii) the function F(x) and the probability distribu-
tion Pr(M > x) are related via

Pr(M > x)

C
F)  x (1)

(0<x<1; ¢ being an arbitrary positive constant). The proof
of Eq. (11) is given in the Appendix (Sec. 2).

In the case of classic shot noise, the magnitudes are de-
terministic and of unit-size (M = 1), and the decay dynamics
are linear (x=—xx)—hence Eq. (11) is indeed satisfied.
Equation (11) further implies that: (i) in the case of unit-size
shot magnitudes scale invariance in the sense of Eq. (10)
holds if and only if the decay-dynamics are linear; (ii) in the
case of linear decay-dynamics scale invariance in the sense
of Eq. (10) holds if and only if the shot magnitudes are of
unit-size. Thus, as long as the shot decay is exponential (i.e.,
governed by linear decay dynamics) then classic shot noise is
the unique shot noise system whose stationary order statistics
structure is scale invariant.

V. INTRINSIC POWER-LAW SCALING

Consider a multiplicative change of intensity »— 7’
=pn—the factor p being an arbitrary positive parameter—in
the Poisson process (N(f))_..«,;< driving the shot noise pro-
cess (&(f))_wey<o- Equation (6) implies that the correspond-
ing sequence of shot noise order statistics—denote it by
{O)}._,—admits the stochastic representation

Law

(O = {Uy - U<} (12)

n=1>

[{U,}_, being a sequence of i.i.d. random variables distrib-
uted uniformly on the unit interval (0,1)].

On the other hand, consider the power-law transformation
x—>y=x"? (0<x,y<1) applied to each and every of the
shot noise order statistics {0, }_,—yielding the transformed
sequence {OP}* . Since 7'=pm, Eq. (6) implies that the
transformed sequence {07} admits the stochastic repre-
sentation

Law

{OMPye = Uy - U Y, (13)

[{U,}_, being a sequence of i.i.d. random variables distrib-
uted uniformly on the unit interval (0,1)].

Equations (12) and (13) imply that the sequences {O)}_,
and {07} | are equal in law. Hence, the linear change of
Poissonian intensity n—> p# is statistically equivalent to the
nonlinear  transformation of the order statistics
0,—0M (n=1,2,...). The intrinsic scaling of classic shot
noise is thus power law.

VI. INTRINSIC STATISTICAL RESILIENCE TO RANDOM
POWER-LAW PERTURBATIONS

In light of the previous section, consider a random power-
law perturbation of the form x+—>y=x"¢ (0<x,y<1)—the

PHYSICAL REVIEW E 77, 061103 (2008)

exponent ¢ being a randomly chosen positive parameter—
applied, independently, to each and every of the shot noise
order statistics {O,}_,. Specifically, consider the random
power-law perturbation

{0 =10,/ (14)

n=1>

where {£,}_, are i.i.d. copies of {—an arbitrary positive val-
ued random variable with finite mean (denoted ({)).

The random power-law perturbation of Eq. (14) is order
breaking: While the input sequence {O,},_, is ordered de-
creasingly (1>0,>0,>05;>--+), the output sequence
{OV&y=_ is unordered. Yet, the output sequence {0} is
an inhomogeneous Poisson process scattered on the unit in-
terval (0, 1) with harmonic intensity

MO =0, (15)

(0<x<1). The proof of Eq. (15) is given in the Appendix
(Sec. 3).

Recalling that the sequence of order statistics {O,},_; is
an inhomogeneous Poisson process scattered on the unit in-
terval (0,1) with harmonic intensity A(x)=(7/«)/x [Eq. (5)],
and exploiting the results of the previous section, we con-
clude that the nonlinear, random, and order-breaking pertur-
bation of Eq. (14) is statistically equivalent to: (i) the linear
and deterministic change of Poissonian intensity n— %’
=({)m; (ii) the deterministic and order-preserving nonlinear
transformation

{0} = {O;Il/@}::l- (16)

The fact that the transformation \(x)—> N\ (x)=({H\(x)
preserves the harmonic functional structure (1/x)—while af-
fecting only the amplitude of harmonic intensity (replacing
the amplitude 7/ « by the amplitude () 77/ k)—means that the
stationary structure of classic shot noise is statistically resil-
ient to random power-law perturbations.

VII. CONCLUSIONS

We revisited the classic shot noise of Campbell and
Schottky in which shots of unit magnitude arrive following a
temporal Poisson process and decay exponentially. The sta-
tionary shot noise level is the aggregate of countably many
shot magnitudes scattered randomly along the unit interval.

A statistical analysis of the order statistics of the afore-
mentioned stationary shot magnitudes unveiled the fractal
nature of classic shot noise, manifested by (i) intrinsic Pare-
tian and scale-invariant statistical structures; (ii) an intrinsic
power-law scaling; (iii) an intrinsic statistical resilience to
random power-law perturbations. It was further shown that
(iv) classic shot noise is a natural mechanism for the genera-
tion of Pareto’s law; (v) the intrinsic scale-invariant structure
of classic shot noise is unique amongst all shot noise systems
with exponential shot decay.

061103-3



IDDO ELIAZAR

APPENDIX

1. Proof of Eq. (6)

Recall that the shots’ emission epochs up to time =0
were labeled -+ <7_3<7_,<7_,<0, and set 7,=0 (7, is nor
an emission epoch—we set 7,=0 only for the convenience of
notation). Since the shots’ emission epochs follow a Poisson
process with intensity 7, the random differences {7_,
= T_p_1}—o are i.i.d. and exponentially distributed with mean
1/ n. In other words, we have

Law

{T—n - T—n—l}f:(] = {gn/ 77}:=1 5

where {£,}"_, is a sequence of i.i.d. random variables distrib-
uted exponentially with unit mean. Hence

(A1)

Law 1 0
{T—n}::l =1- 7](51 + 0t gn) . (Az)

n=1

Since O,=exp(k7_,) (n=1,2,...) Eq. (A2) implies that

Law K ©
{00 ={exp(kT_)}_, = exp(— 77(51 + o+ 5,,)) .

n=1

(A3)

And, setting U,=exp(-£,) (n=1,2,...), Eq. (A3) yields the
stochastic representation:

Law{ K s
{On}:qc:l = exp<_ 77(5] + 0+ gn))

n=1
Law

— {(ul e un)K/n}::l )

Finally, the fact that the random variables {€,},_, are i.i.d.
and exponentially distributed with unit mean implies that the
random variables {{,},_, are i.i.d. and uniformly distributed
on the unit interval (0,1)—concluding the proof.

(A4)

2. Proof of Eq. (11)

We split the proof into two parts.

Part 1

Consider an arbitrary inhomogeneous Poisson process
scattered on the range (0,/) with intensity r(x) (x>0). The
range’s upper bound ! may be either finite (/<) or infinite
(I=00).

The Poisson process has infinitely many points if and only
if its intensity is nonintegrable (fr(x)dx=02). The points of
the Poisson process can be ordered decreasingly—by a ran-
dom sequence [ > X, > X, > X;>---—if and only if its inten-
sity is integrable at the upper bound [ (namely, ['r(x)dx
<oo for all 0<r<<l).

In what follows, we consider the Poisson process to have
infinitely many points which can be ordered decreasingly.
This holds if and only if the function R(¢)=/ ﬁr(x)dx (0<t
<) decreases monotonically from the limit lim,_,oR(7) = to
the limit lim,_,;R(¢)=0, in which case the sequence of order
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statistics [>X,>X,>X3>---
sentation

admits the stochastic repre-

Law

{Xuhet = {R7N(E + -+ +E) s

where [24] (i) the function R™'(x) (x>0) is the inverse of
the function R(z) (0<r<1); (ii) {£,}_, is a sequence of i.i.d.
random variables distributed exponentially with unit mean.

The sequence of order statistics {X,}_, is scale-
invariant—in the sense of Sec. IV—if the following counter-
part of Eq. (10) holds:

Xm+n}°° v
= {X } =1
{ Xm n=1 "

(m=1,2,...). Substituting the stochastic representation of
Eq. (A5) into Eq. (A6) further implies that the following
equality (in law) must hold:

R_l(gl+ +gm+n) ” LaW{R—l(E £ )}:x:
R_1(€1+ +5m) - ' o =l

(AS)

(A6)

n=1

(A7)

(m=1,2,...).

Now, Eq. (A7) holds if and only if the inverse function
R7'(x) satisfies R™'(x+y)=R'(x)R"'(y) (x,y>0). Hence,
the inverse function R™!(x) is an exponential: R~!(x)
=exp(px) (x>0). This, in turn, implies that the function R(z)
is a logarithm: R(t)=ﬁ In(r) (0<r<1). Since the function
R(z) is monotone decreasing (from infinity to zero) we obtain
that it admits the logarithmic form R(¢)=—a In(z) (0<t<1),
where a is an arbitrary positive amplitude. The correspond-
ing intensity r(x), in turn, admits the harmonic form r(x)
=a/x (0<x<1). Our conclusion is thus as follows:

Consider an arbitrary inhomogeneous Poisson process
scattered on the range (0,/) with intensity r(x) (x>0), whose
points can be ordered decreasingly by an infinite sequence of
order statistics. The order statistics are scale invariant—in
the sense of Sec. IV—if and only if: (i) the range is the unit
interval (I=1); and, (ii) the intensity is harmonic r(x)=a/x
(0<x<1; a being an arbitrary positive amplitude).

Part I1

Consider a general shot noise system “fed” by shot mag-
nitudes taking arbitrary values in the range (0,/], as follows.

A random source emits “shots” stochastically in time. The
shot emissions follow a Poisson process with constant inten-
sity (), and the shot magnitudes are i.i.d. realizations of a
random magnitude (M) taking values in the range (0,7].
Once emitted, the shots decay patterns are governed by the
decay-dynamics x=—F(x) [where the function F(x) (x>0) is
positive valued, and such that the ordinary differential equa-
tion x=—F(x) is well defined and has solutions decaying to
zero] [13].

As in the case of classic shot noise, the stationary shot
noise level is the aggregate of countably many shot
magnitudes—albeit scattered randomly along the range (0,/)
[rather than along the unit interval (0,1)]. Moreover [13], the
aforementioned “‘stationary shot magnitudes” form an inho-
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mogeneous Poisson process scattered on the range (0,/) with
intensity

Pr(M > x)
F(x)

(0<x<I). [In the case of linear decay dynamics Eq. (A8)
stems also from results regarding Lévy-driven Ornstein-
Uhlenbeck processes [25].]

Now, the analysis carried out in Part I asserts that the
stationary structure of the shot noise under consideration is
scale invariant—in the sense of Sec. IV—if and only if (i)
the range is the unit interval (I=1); and, (ii) the intensity r(x)
of Eq. (A8) is harmonic: r(x)=a/x (0<x<1; a being an
arbitrary positive amplitude).

Hence, for the general shot noise system considered in
this part, we conclude that the statistical structure of the shot
noise order statistics is scale invariant in the sense of Eq.
(10) if and only if (i) the generic magnitude size M takes
values in the unit interval (0,1]; and (ii) the function F(x)
and the probability distribution Pr(M > x) are related via

r(x)=7g , (A8)

Pr(M > x)

Fx)  x’
(0<x<1; c being an arbitrary positive constant).

3. Proof of Eq. (15)

Fix an arbitrary positive valued random variable { with
finite mean, and let ¢(u) (1> 0) denote {’s probability den-
sity function. Consider the random map x—>y=x"¢ (0
<x,y<1). Given the input point x, it is straightforward to
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deduce that the output point y=x!"¢ is a random variable
governed by the probability density function

ln(x)) —1In(x)
In(y)/ (In(y))%y’

D(x;y) = ¢{( (A10)
0<x,y<1).

We turn now to the random power-law perturbation of Eq.
(14). The “displacement theorem” of the theory of Poisson
processes ([14], Sec. 5.5) asserts that (i) the right-hand side
of Eq. (14) is an inhomogeneous Poisson process scattered
on the unit interval (0,1); (ii) the connection between the
Poissonian intensity A(x) of the left-hand side of Eq. (14),
and the Poissonian intensity \/(y) of the right-hand side of
Eq. (14), is given by

1
A ) =f D (x;y)\(x)dx, (A11)
0

0<y<1).
Substituting Eq. (A10) into Eq. (All), while using the
change of variables u=In(x)/In(y), further yields
Ay) = j O NG uip(w)Jdu, (A12)
0

(0<y<1). Finally, since A(x)=(7/«)/x [Eq. (5)], and since

the random  variable ¢ is of finite mean
(D) =Jgupp(u)du< =), Eq. (A12) implies that
nl
ANy =D~ (A13)
Ky

(0<y<1)—concluding the proof.
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